Name: \qquad
\qquad
Quiz name: Circuits

Which of the following light bulbs has the largest current through it when operated at the
1.

B $30 \mathrm{~W}, 15 \mathrm{~V}$
(C) $20 \mathrm{~W}, 23 \mathrm{~V}$
(D) $40 \mathrm{~W}, 30 \mathrm{~V}$

Which of the following light bulbs has the largest resistance when operated at the voltage for
2. which it's rated?
(A) $6.4 \mathrm{~W}, 12 \mathrm{~V}$
(B) $48 \mathrm{~W}, 24 \mathrm{~V}$
(C) $32 \mathrm{~W}, 36 \mathrm{~V}$
(D) $64 \mathrm{~W}, 48 \mathrm{~V}$
3. A copper wire is stretched so that its length increases and its diameter decreases.

A The wire's resistance decreases, but its resistivity stays the same.
B) The wire's resistivity decreases, but its resistance stays the same.

The wire's resistance increases, but its resistivity stays the same.
The wire's resistivity increases, but its resistance stays the same.

The potential difference (voltage) across a length of wire is increased. Which of the following
4. does not increase as well?

A The power dissipated in the wire.
(B) The resistance of the wire.
(C) The current in the wire.

A stereo amplifier creates a 7.0V potential difference across a speaker. To double the power
5. output of the speaker, the amplifier's potential difference (voltage) must be increased to
(A) 9.9 V
(B) 20 V
(C) 14 V
(D) 49 V
6.

A resistor connected to a 3.0 V battery dissipates 1.0 W . If the battery is replaced by a 6.0 V battery, the power dissipated by the resistor will be
(A) 1 W
(B) 2 W
C) 3 W
(D) 4 W

The figure shows a side view of a wire of varying circular cross section. Rank in order the
7. currents flowing in the three sections
(A) $I_{1}>I_{2}>I_{3}$
(B) $I_{3}>I_{2}>I_{1}$
(C) $I_{1}=I_{2}=I_{3}$

A person gains weight by adding fat - and therefore adding girth - to his body and his limbs, with the amount of muscle remaining constant. How will this affect the electrical resistance of his
8. limbs?
(A) he resistance will increase
(B) the resistance will decrease
(C) the resistance will stay the same
9. What is the current through I_{C}
(A) 2 A
(B) 3 A
(C) 5 A
(D) 7 A

(E) 12 A
10. What is the current through I_{B}
(A) 2 A
(B) 3 A
(C) 5 A
(D) 7 A

(E) 12 A
11. What is the current through section B ?
(A) 1 A
(B) 2 A
(C) 3 A
(D) 4 A

(E) 5 A
.
12. What is the current through section C ?

13. Which of these has the most current?

14. What is the current in the circuit of the figure?
(A) 1.0 A
(B) $\quad 1.7 \mathrm{~A}$
(C) 2.5 A
(D) 4.2 A

15. Which resistor in the figure dissipates the most power?
(A) The 4Ω resistor
(B) The 6Ω resistor
(C) Both dissipate the same power

A metal wire of length L and resistance R is cut into two pieces of equal length. The two pieces
16. are connected together side by side. What is the new resistance?
(A) $R / 4$
(B) $R / 2$
(C) R
(D) $2 R$
(E) $4 R$
17. Does the bulb light?
(A) Yes
(B)

No

The three bulbs are identical and the two batteries are identical. Compare the brightnesses of 18. the bulbs.
(A) $A>B>C$
(B) $\mathrm{A}>\mathrm{C}>\mathrm{B}$
(C) $A>B=C$
(D) $A<B=C$

(E) $A=B=C$
19. The potential difference across the 10 resistor is
(A) 30 V
(B) 20 V
(C) 15 V
(D) 10 V

(E) 5 V

The diagram below shows a circuit with two batteries and three resistors. What is the potential
20. difference across the 200Ω resistor?
2.0 V
(B) 3.0 V
(C) 4.5 V
(D) 7.5 V

(E) There is not enough information to decide.
21. What things about the resistors in this circuit are the same for all three?
(A) CurrentI
(B) Potential difference ΔV
(C) Resistance R
(D) $A \& B$

(E) $B \& C$
22. Which resistor dissipates more power?
(A) The 9Ω resistor
(B) The 1Ω resistor
(C) The dissipate the same power

23. When the switch closes the battery current
(A) increases

B stays the same
(C) decreases

The lightbulbs are identical. Initially both bulbs are glowing. What happens when the switch is 24. closed?
(B) A stays the same; B gets dimmer.
(C) A gets brighter; B stays the same.
(D) Both get dimmer.

(E) A gets brighter; B goes out.
25. What does the ammeter read?
(A) 6 A
(B) 3 A
(C) 2 A
(D) Some other value

(E) Nothing because this will fry the meter.
26. Every minute, 120 C of charge flow through this cross section of the wire.
(A) 240 A
(B) 120 A
(C) 60 A
(D) 2 A
(E) Some other value
27. The wires shown next carry currents as noted. Rate the currents $I_{A^{\prime}} I_{B^{\prime}}$ and I_{C}.
(A) $I_{A}>I_{B}>I_{C}$
(B) $I_{B}>I_{A}>I_{C}$
(C) $I_{C}>I_{A}>I_{B}$
(D) $I_{A}>I_{C}>I_{B}$
(E) $I_{C}>I_{B}>I_{A}$

28. Conside the junction: The current in the fourth wire is
(A) 16 A to the right.
(B) 4 A to the left.

2 A to the right.
(D) 2 A to the left.

(E) Not enough information to tell

A battery is connected to a wire, and creates a current in the wire. Which of the following changes would increase the current?
A Increasing the length of the wire
B Keeping the wire the same length, but making it thicker
(C) Using a battery with a lower emf (voltage)
(D) Making the wire into a coil, but keeping its dimensions the same
(E) Changing the wire material from copper to nichrome

The current through a wire is measured as the potential difference $\Delta \mathrm{V}$ is varied. What is the 30. wire's resistance?
(A) 0.01Ω

(B) 0.02Ω
(C) 50Ω
(D) 100Ω

(E) Some other value

Wire 2 is twice the length and twice the diameter of wire 1 . What is the ratio R2/R1 of their 31. resistances?

(B) $1 / 2$

(D) 2

(E) 4

Several light bulbs, different rated voltages, powers. Which one has highest resistance?
32.

(D) D

E

Which has a larger resistance, a 60 W lightbulb or a 100 W lightbulb, assuming they are both
33. rated for a 120 V socket.
(A) The 60 W bulb
(B) The 100 W bulb
(C) Their resistances are the same.

D There's not enough information to tell.
34. What would the slope of a Current (y-axis) vs Voltage (x-axis) represent?
(A) R
(B) $1 / R$
(C) P
(D) $1 / P$
35. What would the area under a Voltage (y-axis) vs Current (x-axis) represent?

36. What would the slope of a Power (y-axis) vs. Current (x-axis) represent?
(A) V
(B) $1 / V$
(C) R
(D) $1 / R$

